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Simulation methods

Learning Outcomes
In this chapter, you will learn how to

● Design simulation frameworks to solve a variety of problems in
finance

● Explain the difference between pure simulation and
bootstrapping

● Describe the various techniques available for reducing Monte
Carlo sampling variability

● Implement a simulation analysis in EViews

12.1 Motivations

There are numerous situations, in finance and in econometrics, where the

researcher has essentially no idea what is going to happen! To offer one

illustration, in the context of complex financial risk measurement models

for portfolios containing large numbers of assets whose movements are

dependent on one another, it is not always clear what will be the effect of

changing circumstances. For example, following full European monetary

union (EMU) and the replacement of member currencies with the euro,

it is widely believed that European financial markets have become more

integrated, leading the correlation between movements in their equity

markets to rise. What would be the effect on the properties of a portfolio

containing equities of several European countries if correlations between

the markets rose to 99%? Clearly, it is probably not possible to be able to

answer such a question using actual historical data alone, since the event

(a correlation of 99%) has not yet happened.
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The practice of econometrics is made difficult by the behaviour of se-

ries and inter-relationships between them that render model assumptions

at best questionable. For example, the existence of fat tails, structural

breaks and bi-directional causality between dependent and independent

variables, etc. will make the process of parameter estimation and infer-

ence less reliable. Real data is messy, and no one really knows all of the

features that lurk inside it. Clearly, it is important for researchers to have

an idea of what the effects of such phenomena will be for model estima-

tion and inference.

By contrast, simulation is the econometrician’s chance to behave like

a real scientist, conducting experiments under controlled conditions. A

simulations experiment enables the econometrician to determine what

the effect of changing one factor or aspect of a problem will be, while

leaving all other aspects unchanged. Thus, simulations offer the possi-

bility of complete flexibility. Simulation may be defined as an approach

to modelling that seeks to mimic a functioning system as it evolves. The

simulations model will express in mathematical equations the assumed

form of operation of the system. In econometrics, simulation is partic-

ularly useful when models are very complex or sample sizes are small.

12.2 Monte Carlo simulations

Simulations studies are usually used to investigate the properties and

behaviour of various statistics of interest. The technique is often used in

econometrics when the properties of a particular estimation method are

not known. For example, it may be known from asymptotic theory how a

particular test behaves with an infinite sample size, but how will the test

behave if only 50 observations are available? Will the test still have the

desirable properties of being correctly sized and having high power? In

other words, if the null hypothesis is correct, will the test lead to rejection

of the null 5% of the time if a 5% rejection region is used? And if the null

is incorrect, will it be rejected a high proportion of the time?

Examples from econometrics of where simulation may be useful

include:

● Quantifying the simultaneous equations bias induced by treating an

endogenous variable as exogenous

● Determining the appropriate critical values for a Dickey--Fuller test

● Determining what effect heteroscedasticity has upon the size and power

of a test for autocorrelation.
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Box 12.1 Conducting a Monte Carlo simulation

(1) Generate the data according to the desired data generating process (DGP), with the

errors being drawn from some given distribution

(2) Do the regression and calculate the test statistic

(3) Save the test statistic or whatever parameter is of interest

(4) Go back to stage 1 and repeat N times.

Simulations are also often extremely useful tools in finance, in situations

such as:

● The pricing of exotic options, where an analytical pricing formula is

unavailable

● Determining the effect on financial markets of substantial changes in

the macroeconomic environment

● ‘Stress-testing’ risk management models to determine whether they gen-

erate capital requirements sufficient to cover losses in all situations.

In all of these instances, the basic way that such a study would be con-

ducted (with additional steps and modifications where necessary) is shown

in box 12.1.

A brief explanation of each of these steps is in order. The first stage

involves specifying the model that will be used to generate the data. This

may be a pure time series model or a structural model. Pure time se-

ries models are usually simpler to implement, as a full structural model

would also require the researcher to specify a data generating process for

the explanatory variables as well. Assuming that a time series model is

deemed appropriate, the next choice to be made is of the probability distri-

bution specified for the errors. Usually, standard normal draws are used, al-

though any other empirically plausible distribution (such as a Student’s t)

could also be used.

The second stage involves estimation of the parameter of interest in the

study. The parameter of interest might be, for example, the value of a

coefficient in a regression, or the value of an option at its expiry date. It

could instead be the value of a portfolio under a particular set of scenarios

governing the way that the prices of the component assets move over

time.

The quantity N is known as the number of replications, and this should

be as large as is feasible. The central idea behind Monte Carlo is that of

random sampling from a given distribution. Therefore, if the number of

replications is set too small, the results will be sensitive to ‘odd’ combi-

nations of random number draws. It is also worth noting that asymptotic
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arguments apply in Monte Carlo studies as well as in other areas of econo-

metrics. That is, the results of a simulation study will be equal to their

analytical counterparts (assuming that the latter exist) asymptotically.

12.3 Variance reduction techniques

Suppose that the value of the parameter of interest for replication i is

denoted xi . If the average value of this parameter is calculated for a set of,

say, N = 1,000 replications, and another researcher conducts an otherwise

identical study with different sets of random draws, a different average

value of x is almost certain to result. This situation is akin to the problem

of selecting only a sample of observations from a given population in

standard regression analysis. The sampling variation in a Monte Carlo

study is measured by the standard error estimate, denoted Sx

Sx =
√

var(x)

N
(12.1)

where var(x) is the variance of the estimates of the quantity of interest over

the N replications. It can be seen from this equation that to reduce the

Monte Carlo standard error by a factor of 10, the number of replications

must be increased by a factor of 100. Consequently, in order to achieve

acceptable accuracy, the number of replications may have to be set at an

infeasibly high level. An alternative way to reduce Monte Carlo sampling

error is to use a variance reduction technique. There are many variance

reduction techniques available. Two of the intuitively simplest and most

widely used methods are the method of antithetic variates and the method

of control variates. Both of these techniques will now be described.

12.3.1 Antithetic variates

One reason that a lot of replications are typically required of a Monte

Carlo study is that it may take many, many repeated sets of sampling

before the entire probability space is adequately covered. By their very

nature, the values of the random draws are random, and so after a given

number of replications, it may be the case that not the whole range of pos-

sible outcomes has actually occurred.1 What is really required is for suc-

cessive replications to cover different parts of the probability space -- that

1 Obviously, for a continuous random variable, there will be an infinite number of

possible values. In this context, the problem is simply that if the probability space is

split into arbitrarily small intervals, some of those intervals will not have been

adequately covered by the random draws that were actually selected.
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is, for the random draws from different replications to generate outcomes

that span the entire spectrum of possibilities. This may take a long time

to achieve naturally.

The antithetic variate technique involves taking the complement of a

set of random numbers and running a parallel simulation on those. For

example, if the driving stochastic force is a set of T N (0, 1) draws, denoted

ut , for each replication, an additional replication with errors given by

−ut is also used. It can be shown that the Monte Carlo standard error

is reduced when antithetic variates are used. For a simple illustration of

this, suppose that the average value of the parameter of interest across 2

sets of Monte Carlo replications is given by

x̄ = (x1 + x2)/2 (12.2)

where x1 and x2 are the average parameter values for replications sets 1

and 2, respectively. The variance of x̄ will be given by

var(x̄) = 1

4
(var(x1) + var(x2) + 2cov(x1, x2)) (12.3)

If no antithetic variates are used, the two sets of Monte Carlo replications

will be independent, so that their covariance will be zero, i.e.

var(x̄) = 1

4
(var(x1) + var(x2)) (12.4)

However, the use of antithetic variates would lead the covariance in

(12.3) to be negative, and therefore the Monte Carlo sampling error to be

reduced.

It may at first appear that the reduction in Monte Carlo sampling vari-

ation from using antithetic variates will be huge since, by definition,

corr(ut , −ut ) = cov(ut , −ut ) = −1. However, it is important to remember

that the relevant covariance is between the simulated quantity of interest

for the standard replications and those using the antithetic variates. But

the perfect negative covariance is between the random draws (i.e. the error

terms) and their antithetic variates. For example, in the context of option

pricing (discussed below), the production of a price for the underlying

security (and therefore for the option) constitutes a non-linear transfor-

mation of ut . Therefore the covariances between the terminal prices of the

underlying assets based on the draws and based on the antithetic variates

will be negative, but not −1.

Several other variance reduction techniques that operate using similar

principles are available, including stratified sampling, moment-matching

and low-discrepancy sequencing. The latter are also known as quasi-random

sequences of draws. These involve the selection of a specific sequence of
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representative samples from a given probability distribution. Successive

samples are selected so that the unselected gaps left in the probability

distribution are filled by subsequent replications. The result is a set of

random draws that are appropriately distributed across all of the out-

comes of interest. The use of low-discrepancy sequences leads the Monte

Carlo standard errors to be reduced in direct proportion to the number

of replications rather than in proportion to the square root of the num-

ber of replications. Thus, for example, to reduce the Monte Carlo standard

error by a factor of 10, the number of replications would have to be in-

creased by a factor of 100 for standard Monte Carlo random sampling, but

only 10 for low-discrepancy sequencing. Further details of low-discrepancy

techniques are beyond the scope of this text, but can be seen in Boyle

(1977) or Press et al. (1992). The former offers a detailed and relevant

example in the context of options pricing.

12.3.2 Control variates

The application of control variates involves employing a variable similar

to that used in the simulation, but whose properties are known prior to

the simulation. Denote the variable whose properties are known by y,

and that whose properties are under simulation by x . The simulation is

conducted on x and also on y, with the same sets of random number

draws being employed in both cases. Denoting the simulation estimates

of x and y by x̂ and ŷ, respectively, a new estimate of x can be derived

from

x∗ = y + (x̂ − ŷ) (12.5)

Again, it can be shown that the Monte Carlo sampling error of this quan-

tity, x∗, will be lower than that of x provided that a certain condition

holds. The control variates help to reduce the Monte Carlo variation

owing to particular sets of random draws by using the same draws on

a related problem whose solution is known. It is expected that the effects

of sampling error for the problem under study and the known problem

will be similar, and hence can be reduced by calibrating the Monte Carlo

results using the analytic ones.

It is worth noting that control variates succeed in reducing the Monte

Carlo sampling error only if the control and simulation problems are

very closely related. As the correlation between the values of the control

statistic and the statistic of interest is reduced, the variance reduction is

weakened. Consider again (12.5), and take the variance of both sides

var(x∗) = var(y + (x̂ − ŷ)) (12.6)
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var(y) = 0 since y is a quantity which is known analytically and is therefore

not subject to sampling variation, so (12.6) can be written

var(x∗) = var(x̂) + var(ŷ) − 2cov(x̂, ŷ) (12.7)

The condition that must hold for the Monte Carlo sampling variance to

be lower with control variates than without is that var(x∗) is less than

var(x̂). Taken from (12.7), this condition can also be expressed as

var(ŷ) − 2cov(x̂, ŷ) < 0

or

cov(x̂, ŷ) >
1

2
var(ŷ)

Divide both sides of this inequality by the products of the standard devi-

ations, i.e. by (var(x̂), var(ŷ))1/2, to obtain the correlation on the LHS

corr(x̂, ŷ) >
1

2

√
var(ŷ)

var(x̂)

To offer an illustration of the use of control variates, a researcher may

be interested in pricing an arithmetic Asian option using simulation. Re-

call that an arithmetic Asian option is one whose payoff depends on the

arithmetic average value of the underlying asset over the lifetime of the

averaging; at the time of writing, an analytical (closed-form) model is not

yet available for pricing such options. In this context, a control variate

price could be obtained by finding the price via simulation of a simi-

lar derivative whose value is known analytically -- e.g. a vanilla European

option. Thus, the Asian and vanilla options would be priced using sim-

ulation, as shown below, with the simulated price given by PA and P∗
BS,

respectively. The price of the vanilla option, PBS is also calculated using an

analytical formula, such as Black--Scholes. The new estimate of the Asian

option price, P∗
A, would then be given by

P∗
A = (PA − PBS) + P∗

BS (12.8)

12.3.3 Random number re-usage across experiments

Although of course it would not be sensible to re-use sets of random num-

ber draws within a Monte Carlo experiment, using the same sets of draws

across experiments can greatly reduce the variability of the difference in

the estimates across those experiments. For example, it may be of interest

to examine the power of the Dickey--Fuller test for samples of size 100

observations and for different values of φ (to use the notation of chapter

7). Thus, for each experiment involving a different value of φ, the same
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set of standard normal random numbers could be used to reduce the sam-

pling variation across experiments. However, the accuracy of the actual

estimates in each case will not be increased, of course.

Another possibility involves taking long series of draws and then slic-

ing them up into several smaller sets to be used in different experiments.

For example, Monte Carlo simulation may be used to price several op-

tions of different times to maturity, but which are identical in all other

respects. Thus, if 6-month, 3-month and 1-month horizons were of inter-

est, sufficient random draws to cover 6 months would be made. Then the

6-months’ worth of draws could be used to construct two replications of

a 3-month horizon, and six replications for the 1-month horizon. Again,

the variability of the simulated option prices across maturities would be

reduced, although the accuracies of the prices themselves would not be

increased for a given number of replications.

Random number re-usage is unlikely to save computational time, for

making the random draws usually takes a very small proportion of the

overall time taken to conduct the whole experiment.

12.4 Bootstrapping

Bootstrapping is related to simulation, but with one crucial difference.

With simulation, the data are constructed completely artificially. Boot-

strapping, on the other hand, is used to obtain a description of the prop-

erties of empirical estimators by using the sample data points themselves,

and it involves sampling repeatedly with replacement from the actual

data. Many econometricians were initially highly sceptical of the useful-

ness of the technique, which appears at first sight to be some kind of

magic trick -- creating useful additional information from a given sample.

Indeed, Davison and Hinkley (1997, p. 3), state that the term ‘bootstrap’

in this context comes from an analogy with the fictional character Baron

Munchhausen, who got out from the bottom of a lake by pulling himself

up by his bootstraps.

Suppose a sample of data, y = y1, y2, . . . , yT are available and it is de-

sired to estimate some parameter θ . An approximation to the statistical

properties of θ̂T can be obtained by studying a sample of bootstrap esti-

mators. This is done by taking N samples of size T with replacement from

y and re-calculating θ̂ with each new sample. A series of θ̂ estimates is

then obtained, and their distribution can be considered.

The advantage of bootstrapping over the use of analytical results is

that it allows the researcher to make inferences without making strong
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distributional assumptions, since the distribution employed will be that of

the actual data. Instead of imposing a shape on the sampling distribution

of the θ̂ value, bootstrapping involves empirically estimating the sampling

distribution by looking at the variation of the statistic within-sample.

A set of new samples is drawn with replacement from the sample and

the test statistic of interest calculated from each of these. Effectively, this

involves sampling from the sample, i.e. treating the sample as a population

from which samples can be drawn. Call the test statistics calculated from

the new samples θ̂∗. The samples are likely to be quite different from

each other and from the original θ̂ value, since some observations may be

sampled several times and others not at all. Thus a distribution of values

of θ̂∗ is obtained, from which standard errors or some other statistics of

interest can be calculated.

Along with advances in computational speed and power, the number

of bootstrap applications in finance and in econometrics have increased

rapidly in previous years. For example, in econometrics, the bootstrap has

been used in the context of unit root testing. Scheinkman and LeBaron

(1989) also suggest that the bootstrap can be used as a ‘shuffle diagnostic’,

where as usual the original data are sampled with replacement to form

new data series. Successive applications of this procedure should generate

a collection of data sets with the same distributional properties, on aver-

age, as the original data. But any kind of dependence in the original series

(e.g. linear or non-linear autocorrelation) will, by definition, have been re-

moved. Applications of econometric tests to the shuffled series can then

be used as a benchmark with which to compare the results on the actual

data or to construct standard error estimates or confidence intervals.

In finance, an application of bootstrapping in the context of risk man-

agement is discussed below. Another important recent proposed use of

the bootstrap is as a method for detecting data snooping (data mining)

in the context of tests of the profitability of technical trading rules. Data

snooping occurs when the same set of data is used to construct trading

rules and also to test them. In such cases, if a sufficient number of trading

rules are examined, some of them are bound, purely by chance alone, to

generate statistically significant positive returns. Intra-generational data

snooping is said to occur when, over a long period of time, technical trad-

ing rules that ‘worked’ in the past continue to be examined, while the

ones that did not fade away. Researchers are then made aware of only the

rules that worked, and not the other, perhaps thousands, of rules that

failed.

Data snooping biases are apparent in other aspects of estimation and

testing in finance. Lo and MacKinlay (1990) find that tests of financial asset
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pricing models (CAPM) may yield misleading inferences when properties

of the data are used to construct the test statistics. These properties relate

to the construction of portfolios based on some empirically motivated

characteristic of the stock, such as market capitalisation, rather than a

theoretically motivated characteristic, such as dividend yield.

Sullivan, Timmermann and White (1999) and White (2000) propose the

use of a bootstrap to test for data snooping. The technique works by plac-

ing the rule under study in the context of a ‘universe’ of broadly similar

trading rules. This gives some empirical content to the notion that a vari-

ety of rules may have been examined before the final rule is selected. The

bootstrap is applied to each trading rule, by sampling with replacement

from the time series of observed returns for that rule. The null hypoth-

esis is that there does not exist a superior technical trading rule. Sulli-

van, Timmermann and White show how a p-value of the ‘reality check’

bootstrap-based test can be constructed, which evaluates the significance

of the returns (or excess returns) to the rule after allowing for the fact

that the whole universe of rules may have been examined.

12.4.1 An example of bootstrapping in a regression context

Consider a standard regression model

y = Xβ + u (12.9)

The regression model can be bootstrapped in two ways.

Re-sample the data

This procedure involves taking the data, and sampling the entire rows

corresponding to observation i together. The steps would then be as shown

in box 12.2.

A methodological problem with this approach is that it entails sampling

from the regressors, and yet under the CLRM, these are supposed to be

Box 12.2 Re-sampling the data

(1) Generate a sample of size T from the original data by sampling with replacement

from the whole rows taken together (that is, if observation 32 is selected, take y32

and all values of the explanatory variables for observation 32).

(2) Calculate β̂∗, the coefficient matrix for this bootstrap sample.

(3) Go back to stage 1 and generate another sample of size T . Repeat these stages a

total of N times. A set of N coefficient vectors, β̂∗, will thus be obtained and in

general they will all be different, so that a distribution of estimates for each

coefficient will result.
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Box 12.3 Re-sampling from the residuals

(1) Estimate the model on the actual data, obtain the fitted values ŷ, and calculate the

residuals, û
(2) Take a sample of size T with replacement from these residuals (and call these û∗),

and generate a bootstrapped-dependent variable by adding the fitted values to the

bootstrapped residuals

y∗ = ŷ + û∗ (12.10)

(3) Then regress this new dependent variable on the original X data to get a

bootstrapped coefficient vector, β̂∗

(4) Go back to stage 2, and repeat a total of N times.

fixed in repeated samples, which would imply that they do not have a

sampling distribution. Thus, resampling from the data corresponding to

the explanatory variables is not in the spirit of the CLRM.

As an alternative, the only random influence in the regression is the

errors, u, so why not just bootstrap from those?

Re-sampling from the residuals

This procedure is ‘theoretically pure’ although harder to understand and

to implement. The steps are shown in box 12.3.

12.4.2 Situations where the bootstrap will be ineffective

There are at least two situations where the bootstrap, as described above,

will not work well.

Outliers in the data

If there are outliers in the data, the conclusions of the bootstrap may be

affected. In particular, the results for a given replication may depend crit-

ically on whether the outliers appear (and how often) in the bootstrapped

sample.

Non-independent data

Use of the bootstrap implicitly assumes that the data are independent of

one another. This would obviously not hold if, for example, there were

autocorrelation in the data. A potential solution to this problem is to use a

‘moving block bootstrap’. Such a method allows for the dependence in the

series by sampling whole blocks of observations at a time. These, and many

other issues relating to the theory and practical usage of the bootstrap

are given in Davison and Hinkley (1997); see also Efron (1979;1982).
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It is also worth noting that variance reduction techniques are also avail-

able under the bootstrap, and these work in a very similar way to those

described above in the context of pure simulation.

12.5 Random number generation

Most econometrics computer packages include a random number gener-

ator. The simplest class of numbers to generate are from a uniform (0,1)

distribution. A uniform (0,1) distribution is one where only values between

zero and one are drawn, and each value within the interval has an equal

chance of being selected. Uniform draws can be either discrete or con-

tinuous. An example of a discrete uniform number generator would be a

die or a roulette wheel. Computers generate continuous uniform random

number draws.

Numbers that are a continuous uniform (0,1) can be generated according

to the following recursion

yi+1 = (ayi + c) modulo m, i = 0, 1, . . . , T (12.11)

then

Ri+1 = yi+1/m for i = 0, 1, . . . , T (12.12)

for T random draws, where y0 is the seed (the initial value of y), a is a

multiplier and c is an increment. All three of these are simply constants.

The ‘modulo operator’ simply functions as a clock, returning to one after

reaching m.

Any simulation study involving a recursion, such as that described by

(12.11) to generate the random draws, will require the user to specify an

initial value, y0, to get the process started. The choice of this value will,

undesirably, affect the properties of the generated series. This effect will

be strongest for y1, y2, . . . , but will gradually die away. For example, if

a set of random draws is used to construct a time series that follows

a GARCH process, early observations on this series will behave less like

the GARCH process required than subsequent data points. Consequently,

a good simulation design will allow for this phenomenon by generating

more data than are required and then dropping the first few observations.

For example, if 1,000 observations are required, 1,200 observations might

be generated, with observations 1 to 200 subsequently deleted and 201 to

1,200 used to conduct the analysis.

These computer-generated random number draws are known as pseudo-

random numbers, since they are in fact not random at all, but entirely

deterministic, since they have been derived from an exact formula! By
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carefully choosing the values of the user-adjustable parameters, it is pos-

sible to get the pseudo-random number generator to meet all the statisti-

cal properties of true random numbers. Eventually, the random number

sequences will start to repeat, but this should take a long time to happen.

See Press et al. (1992) for more details and Fortran code, or Greene (2002)

for an example.

The U(0,1) draws can be transformed into draws from any desired dis-

tribution -- for example a normal or a Student’s t. Usually, econometric

software packages with simulations facilities would do this automatically.

12.6 Disadvantages of the simulation approach to econometric
or financial problem solving

● It might be computationally expensive

That is, the number of replications required to generate precise solu-

tions may be very large, depending upon the nature of the task at hand.

If each replication is relatively complex in terms of estimation issues,

the problem might be computationally infeasible, such that it could

take days, weeks or even years to run the experiment. Although CPU

time is becoming ever cheaper as faster computers are brought to mar-

ket, the technicality of the problems studied seems to accelerate just as

quickly!

● The results might not be precise

Even if the number of replications is made very large, the simulation

experiments will not give a precise answer to the problem if some un-

realistic assumptions have been made of the data generating process.

For example, in the context of option pricing, the option valuations

obtained from a simulation will not be accurate if the data generating

process assumed normally distributed errors while the actual underly-

ing returns series is fat-tailed.

● The results are often hard to replicate

Unless the experiment has been set up so that the sequence of random

draws is known and can be reconstructed, which is rarely done in prac-

tice, the results of a Monte Carlo study will be somewhat specific to

the given investigation. In that case, a repeat of the experiment would

involve different sets of random draws and therefore would be likely

to yield different results, particularly if the number of replications is

small.

● Simulation results are experiment-specific

The need to specify the data generating process using a single set of

equations or a single equation implies that the results could apply to
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only that exact type of data. Any conclusions reached may or may not

hold for other data generating processes. To give one illustration, ex-

amining the power of a statistical test would, by definition, involve

determining how frequently a wrong null hypothesis is rejected. In the

context of DF tests, for example, the power of the test as determined

by a Monte Carlo study would be given by the percentage of times that

the null of a unit root is rejected. Suppose that the following data gen-

erating process is used for such a simulation experiment

yt = 0.99yt−1 + ut , ut ∼ N(0, 1) (12.13)

Clearly, the null of a unit root would be wrong in this case, as is nec-

essary to examine the power of the test. However, for modest sample

sizes, the null is likely to be rejected quite infrequently. It would not

be appropriate to conclude from such an experiment that the DF test

is generally not powerful, since in this case the null (φ = 1) is not very

wrong! This is a general problem with many Monte Carlo studies. The

solution is to run simulations using as many different and relevant

data generating processes as feasible. Finally, it should be obvious that

the Monte Carlo data generating process should match the real-world

problem of interest as far as possible.

To conclude, simulation is an extremely useful tool that can be applied to

an enormous variety of problems. The technique has grown in popularity

over the past decade, and continues to do so. However, like all tools, it is

dangerous in the wrong hands. It is very easy to jump into a simulation

experiment without thinking about whether such an approach is valid or

not.

12.7 An example of Monte Carlo simulation in econometrics: deriving
a set of critical values for a Dickey–Fuller test

Recall, that the equation for a Dickey--Fuller (DF) test applied to some

series yt is the regression

yt = φyt−1 + ut (12.14)

so that the test is one of H0: φ = 1 against H1: φ < 1. The relevant test

statistic is given by

τ = φ̂ − 1

SE(φ̂)
(12.15)
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Box 12.4 Setting up a Monte Carlo simulation

(1) Construct the data generating process under the null hypothesis – that is, obtain a

series for y that follows a unit root process. This would be done by:

● Drawing a series of length T , the required number of observations, from a

normal distribution. This will be the error series, so that ut ∼ N (0,1).

● Assuming a first value for y, i.e. a value for y at time t = 1.

● Constructing the series for y recursively, starting with y2, y3, and so on

y2 = y1 + u2

y3 = y2 + u3 (12.16)

. . .

yT = yT −1 + uT

(2) Calculating the test statistic, τ .

(3) Repeating steps 1 and 2 N times to obtain N replications of the experiment. A

distribution of values for τ will be obtained across the replications.

(4) Ordering the set of N values of τ from the lowest to the highest. The relevant 5%

critical value will be the 5th percentile of this distribution.

Under the null hypothesis of a unit root, the test statistic does not follow

a standard distribution, and therefore a simulation would be required to

obtain the relevant critical values. Obviously, these critical values are well

documented, but it is of interest to see how one could generate them. A

very similar approach could then potentially be adopted for situations

where there has been less research and where the results are relatively

less well known.

The simulation would be conducted in the four steps shown in box 12.4.

Some EViews code for conducting such a simulation is given below. The

objective is to develop a set of critical values for Dickey--Fuller test re-

gressions. The simulation framework considers sample sizes of 1,000, 500

and 100 observations. For each of these sample sizes, regressions with no

constant or trend, a constant but no trend, and a constant and trend are

conducted. 50,000 replications are used in each case, and the critical val-

ues for a 1-sided test at the 1%, 5% and 10% levels are determined. The

code can be found pre-written in a file entitled ‘dfcv.prg’.

EViews programs are simply sets of instructions saved as plain text, so

that they can be written from within EViews, or using a word processor or

text editor. EViews program files must have a ‘.PRG’ suffix. There are several

ways to run the programs once written, but probably the simplest is to

write all of the instructions first, and to save them. Then open the EViews

software and choose File, Open and Program, and when prompted select

the directory and file for the instructions. The program containing the
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instructions will then appear on the screen. To run the program, click on

the Run button. EViews will then open a dialog box with several options,

including whether to run the program in ‘Verbose’ or ‘Quiet’ mode. Choose

Verbose mode to see the instruction line that is being run at each point

in its execution (i.e. the screen is continually updated). This is useful for

debugging programs or for running short programs. Choose Quiet to run

the program without updating the screen display as it is running, which

will make it execute (considerably) more quickly. The screen would appear

as in screenshot 12.1.

Screenshot 12.1

Running an EViews

program

Then click OK and off it goes! The following lists the instructions that are

contained in the program, and the discussion below explains what each

line does.

′NEW WORKFILE CREATED CALLED DF CV, UNDATED
′WITH 50000 OBSERVATIONS

WORKFILE DF CV U 50000

RNDSEED 12345
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SERIES T1

SERIES T2

SERIES T3

SCALAR K1

SCALAR K2

SCALAR K3

SCALAR K4

SCALAR K5

SCALAR K6

SCALAR K7

SCALAR K8

SCALAR K9

!NREPS=50000

!NOBS=1000

FOR !REPC=1 TO !NREPS

SMPL @FIRST @FIRST

SERIES Y1=0

SMPL @FIRST+1 !NOBS+200

SERIES Y1=Y1(−1)+NRND

SERIES DY1=Y1-Y1(−1)

SMPL @FIRST+200 !NOBS+200

EQUATION EQ1.LS DY1 Y1(−1)

T1(!REPC)=@TSTATS(1)

EQUATION EQ2.LS DY1 C Y1(−1)

T2(!REPC)=@TSTATS(2)

EQUATION EQ3.LS DY1 C @TREND Y1(−1)

T3(!REPC)=@TSTATS(3)

NEXT

SMPL @FIRST !NREPS

K1=@QUANTILE(T1,0.01)

K2=@QUANTILE(T1,0.05)

K3=@QUANTILE(T1,0.1)

K4=@QUANTILE(T2,0.01)

K5=@QUANTILE(T2,0.05)

K6=@QUANTILE(T2,0.1)

K7=@QUANTILE(T3,0.01)

K8=@QUANTILE(T3,0.05)

K9=@QUANTILE(T3,0.1)

Although there are probably more efficient ways to structure the program

than that given above, this sample code has been written in a style to make
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it easy to follow. The program would be run in the way described above.

That is, it would be opened from within EViews, and then the Run button

would be pressed and the mode of execution (Verbose or Quiet) chosen.

A first point to note is that comment lines are denoted by a ′ symbol

in EViews. The first line of code, ‘WORKFILE DF CV U 50000’ will set up a

new EViews workfile called DF CV.WK1, which will be undated (U) and will

contain series of length 50,000. This step is required for EViews to have

a place to put the output series since no other workfile will be opened

by this program! In situations where the program requires an already

existing workfile containing data to be opened, this line would not be

necessary since any new results and objects created would be appended

to the original workfile. RNDSEED 12345 sets the random number seed

that will be used to start the random draws.

‘SERIES T1’ creates a new series T1 that will be filled with NA elements.

The series T1, T2 and T3, will hold the Dickey--Fuller test statistics for each

replication, for the three cases (no constant or trend, constant but no

trend, constant and trend, respectively). ‘SCALAR K1’ sets up a scalar (sin-

gle number) K1. K1, . . . , K9 will be used to hold the 1%, 5% and 10% critical

values for each of the three cases. !NREPS=50000 and !NOBS=1000 set the

number of replications that will be used to 50,000 and the number of ob-

servations to be used in each time series to 1,000. The exclamation marks

enable the scalars to be used without previously having to define them

using the SCALAR instruction. Of course, these values can be changed as

desired. Loops in EViews are defined as FOR at the start and NEXT at the

end, in a similar way to visual basic code. Thus FOR !REPC=1 TO !NREPS

starts the main replications loop, which will run from 1 to NREPS.

SMPL @FIRST @FIRST

SERIES Y1=0

The two lines above set the first observation of a new series Y1 to zero (so

@FIRST is EViews method of denoting the first observation in the series,

and the final observation is denoted by, you guessed it, @LAST). Then

SMPL @FIRST+1 !NOBS+200

SERIES Y1=Y1(−1)+NRND

SERIES DY1=Y1-Y1(−1)

will set the sample to run from observation 2 to observation !NOBS+200

(1200). This enables the program to generate 200 additional startup obser-

vations. It is very easy in EViews to construct a series following a random

walk process, and this is done by the second of the above three lines. The
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current value of Y1 is set to the previous value plus a standard normal

random draw (NRND). In EViews, draws can be taken from a wide array

of distributions (see the User Guide). SERIES DY1 . . . creates a new series

called DY1 that contains the first difference of Y.

SMPL @FIRST+200 !NOBS+200

EQUATION EQ1.LS DY1 Y1(−1)

The first of the two lines above sets the sample to run from observation

201 to observation 1200, thus dropping the 200 startup observations. The

following line actually conducts an OLS estimation (‘.LS’), in the process

creating an equation object called EQ1. The dependent variable is DY1 and

the independent variable is the lagged value of Y, Y(−1).

Following the equation estimation, several new quantities will have

been created. These quantities are denoted by a ‘@’ in EViews. So the line

‘T1(!REPC)=@TSTATS(1)’ will take the t-ratio of the coefficient on the first

(and in this case only) independent variable, and will place it in the !REPC

row of the series T1. Similarly, the t-ratios on the lagged value of Y will

be placed in T2 and T3 for the regressions with constant and constant

and trend respectively. Finally, NEXT will finish the replications loop and

SMPL @FIRST !NREPS will set the sample to run from 1 to 50000, and the

1%, 5%, and 10% critical values for the no constant or trend case will then

be found in K1, K2 and K3. The ‘@QUANTILE(T1,0.01)’ instruction will take

the 1% quantile from the series T1, which avoids sorting the series.

The critical value obtained by running the above instructions, which

are virtually identical to those found in the statistical tables at the end

of this book, are (to two decimal places)

1% 5% 10%

No constant or trend −2.58 −1.95 −1.63
Constant but no trend −3.45 −2.85 −2.56
Constant and trend −3.93 −3.41 −3.43

This is to be expected, for the use of 50,000 replications should en-

sure that an approximation to the asymptotic behaviour is obtained. For

example, the 5% critical value for a test regression with no constant or

trend and 500 observations is −1.945 in this simulation, and −1.95 in

Fuller (1976). Although the Dickey--Fuller simulation was unnecessary in

the sense that the critical values for the resulting test statistics are al-

ready well known and documented, a very similar procedure could be
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adopted for a variety of problems. For example, a similar approach could

be used for constructing critical values or for evaluating the performance

of statistical tests in various situations.

12.8 An example of how to simulate the price of a financial option

A simple example of how to use a Monte Carlo study for obtaining a price

for a financial option is shown below. Although the option used for illus-

tration here is just a plain vanilla European call option which could be val-

ued analytically using the standard Black--Scholes (1973) formula, again,

the method is sufficiently general that only relatively minor modifica-

tions would be required to value more complex options. Boyle (1977) gives

an excellent and highly readable introduction to the pricing of financial

options using Monte Carlo.

The steps involved are shown in box 12.5.

12.8.1 Simulating the price of a financial option using a fat-tailed

underlying process

A fairly limiting and unrealistic assumption in the above methodology

for pricing options is that the underlying asset returns are normally dis-

tributed, whereas in practice, it is well know that asset returns are fat-

tailed. There are several ways to remove this assumption. First, one could

employ draws from a fat-tailed distribution, such as a Student’s t , in step

Box 12.5 Simulating the price of an Asian option

(1) Specify a data generating process for the underlying asset. A random walk with drift

model is usually assumed. Specify also the assumed size of the drift component

and the assumed size of the volatility parameter. Specify also a strike price K , and

a time to maturity, T .

(2) Draw a series of length T , the required number of observations for the life of the

option, from a normal distribution. This will be the error series, so that εt ∼ N(0, 1).

(3) Form a series of observations of length T on the underlying asset.

(4) Observe the price of the underlying asset at maturity observation T . For a call option,

if the value of the underlying asset on maturity date, PT ≤ K , the option expires

worthless for this replication. If the value of the underlying asset on maturity date,

PT > K , the option expires in the money, and has value on that date equal to

PT − K , which should be discounted back to the present day using the risk-free

rate. Use of the risk-free rate relies upon risk-neutrality arguments (see Duffie,

1996).

(5) Repeat steps 1 to 4 a total of N times, and take the average value of the option

over the N replications. This average will be the price of the option.



566 Introductory Econometrics for Finance

Box 12.6 Generating draws from a GARCH process

(1) Draw a series of length T , the required number of observations for the life of the

option, from a normal distribution. This will be the error series, so that εt ∼ N(0, 1).

(2) Recall that one way of expressing a GARCH model is

rt = μ + ut ut = εtσt εt ∼ N(0, 1) (12.17)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (12.18)

A series of εt , have been constructed and it is necessary to specify initialising

values y1 and σ 2
1 and plausible parameter values for α0, α1, β. Assume that y1 and

σ 2
1 are set to μ and one, respectively, and the parameters are given by α0 = 0.01,

α1 = 0.15, β = 0.80. The equations above can then be used to generate the model

for rt as described above.

2 above. Another method, which would generate a distribution of returns

with fat tails, would be to assume that the errors and therefore the re-

turns follow a GARCH process. To generate draws from a GARCH process,

do the steps shown in box 12.6.

12.8.2 Simulating the price of an Asian option

An Asian option is one whose payoff depends upon the average value of

the underlying asset over the averaging horizon specified in the contract.

Most Asian options contracts specify that arithmetic rather than geomet-

ric averaging should be employed. Unfortunately, the arithmetic average

of a unit root process with a drift is not well defined. Additionally, even

if the asset prices are assumed to be log-normally distributed, the arith-

metic average of them will not be. Consequently, a closed-form analytical

expression for the value of an Asian option has yet to be developed. Thus,

the pricing of Asian options represents a natural application for simula-

tions methods. Determining the value of an Asian option is achieved in

almost exactly the same way as for a vanilla call or put. The simulation is

conducted identically, and the only difference occurs in the very last step

where the value of the payoff at the date of expiry is determined.

12.8.3 Pricing Asian options using EViews

A sample of EViews code for determining the value of an Asian option is

given below. The example is in the context of an arithmetic Asian option

on the FTSE 100, and two simulations will be undertaken with different

strike prices (one that is out of the money forward and one that is in the

money forward). In each case, the life of the option is 6 months, with

daily averaging commencing immediately, and the option value is given
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for both calls and puts in terms of index points. The parameters are given

as follows, with dividend yield and risk-free rates expressed as percentages:

Simulation 1: strike=6500, risk-free=6.24, dividend yield=2.42, ‘today’s’

FTSE=6289.70, forward price=6405.35, implied volatility=26.52

Simulation 2: strike=5500, risk-free=6.24, dividend yield=2.42, ‘today’s’

FTSE=6289.70, forward price=6405.35, implied volatility=34.33

Any other programming language or statistical package would be

equally applicable, since all that is required is a Gaussian random number

generator, the ability to store in arrays and to loop. Since no actual estima-

tion is performed, differences between packages are likely to be negligible.

All experiments are based on 25,000 replications and their antithetic vari-

ates (total: 50,000 sets of draws) to reduce Monte Carlo sampling error.

Some sample code for pricing an ASIAN option for Normally distributed

errors using EViews is given as follows:

′NEW WORKFILE CREATED CALLED ASIAN P, UNDATED
′WITH 50000 OBSERVATIONS

WORKFILE ASIAN P U 50000

RNDSEED 12345

!N=125

!TTM=0.5

!NREPS=50000

!IV=0.28

!RF=0.0624

!DY=0.0242

!DT=!TTM / !N

!DRIFT=(!RF-!DY-(!IVˆ2/2.0))∗!DT

!VSQRDT=!IV∗(!DTˆ0.5)

!K=5500

!S0=6289.7

SERIES APVAL

SERIES ACVAL

SERIES SPOT

SCALAR AV

SCALAR CALLPRICE

SCALAR PUTPRICE

SERIES RANDS
′GENERATES THE DATA

FOR !REPC=1 TO !NREPS STEP 2

RANDS=NRND
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SERIES SPOT=0

SMPL @FIRST @FIRST

SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))

SMPL 2 !N

SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE

SMPL @FIRST !N

AV=@MEAN(SPOT)

IF AV>!K THEN

ACVAL(!REPC)=(AV-!K)∗EXP(-!RF∗!TTM)

ELSE

ACVAL(!REPC)=0

ENDIF

IF AV<!K THEN

APVAL(!REPC)=(!K-AV)∗EXP(-!RF∗!TTM)

ELSE

APVAL(!REPC)=0

ENDIF

RANDS=-RANDS

SERIES SPOT=0

SMPL @FIRST @FIRST

SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))

SMPL 2 !N

SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE

SMPL @FIRST !N

AV=@MEAN(SPOT)

IF AV>!K THEN

ACVAL(!REPC+1)=(AV-!K)∗EXP(-!RF∗!TTM)

ELSE

ACVAL(!REPC+1)=0

ENDIF

IF AV<!K THEN

APVAL(!REPC+1)=(!K-AV)∗EXP(-!RF∗!TTM)

ELSE

APVAL(!REPC+1)=0

ENDIF

NEXT

SMPL @FIRST !NREPS

CALLPRICE=@MEAN(ACVAL)

PUTPRICE=@MEAN(APVAL)
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Many parts of the program above use identical instructions to those

given for the DF critical value simulation, and so annotation will now

focus on the construction of the program and on previously unseen com-

mands. The first block of commands set up a new workfile called ‘ASIAN P’

that will hold all of the objects and output. Then the following lines spec-

ify the parameters for the simulation of the path of the price of the

underlying asset (the drift, the implied volatility, etc.).

‘!=DT=!TTM/!N’ splits the time to maturity (0.5 years) into N discrete

time periods. Since daily averaging is required, it is easiest to set N =
125 (the approximate number of trading days in half a year), so that each

time period DT represents one day. The model assumes that the log of

the underlying asset price follows a geometric Brownian motion, which

could be given by

S + dS = S exp

[(
r f − dy − 1

2
σ 2

)
dt + σdz

]
(12.19)

where dz is a standard Wiener process. Further details of this continuous

time representation of the movement of the underlying asset over time are

beyond the scope of this book. A treatment of this and many other useful

option pricing formulae and computer code are given in Haug (1998). The

discrete time approximation to this can be written

St = St−1 exp

[(
r f − dy − 1

2
σ 2

)
dt + σ

√
dt ut

]
(12.20)

The following instructions set up the arrays for the underlying spot price

(called ‘SPOT’), and for the discounted values of the put (‘APVAL’) and call

(‘ACVAL’). Note that by default, arrays of the length given by the ‘workfile’

definition statement (50000) will be created.

The command ‘FOR !REPC=1 TO !NREPS DO REPC=1, NREPS,2’ starts

the main do loop for the simulation, looping up to the number of repli-

cations, in steps of 2. The loop ends at ‘END DO REPC’. Steps of 2 are used

because antithetic variates are also used for each replication, which will

create another simulated path for the underlying asset prices and option

value.

The random N(0,1) draws are made, which are then constructed into

a series of future prices of the underlying asset for the next 125 days.

‘AV=@MEAN(SPOT)’ will compute the average price of the underlying over

the lifetime of the option (125 days). The following two statements con-

struct the terminal payoffs for the call and the put options respectively.
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For the call, ‘ACVAL’ is set to the average underlying price less the strike

price if the average is greater than the strike (i.e. if the option expires

in the money), and zero otherwise. Vice versa for the put. The payoff at

expiry is discounted back to the present using the risk-free rate, and placed

in the REPC row of the ‘ACVAL’ or ‘APVAL’ array for the calls and puts,

respectively.

The process then repeats using the antithetic variates, constructed using

‘RANDS = -RANDS’. The call and put present values for these paths are put

in the even rows of ‘ACVAL’ and ‘APVAL’.

This completes one cycle of the REPC loop, which starts again with

REPC=3, then 5, 7, 9, . . . , 49999. The result will be 2 arrays ‘ACVAL’ and

‘APVAL’, which will contain 50,000 rows comprising the present value

of the call and put option for each simulated path. The option prices

would then simply be given by the averages over the 50,000 replica-

tions.

Note that both call values and put values can be calculated easily from

a given simulation, since the most computationally expensive step is in

deriving the path of simulated prices for the underlying asset. The results

are given in table 10.1, along with the values derived from an analytical

approximation to the option price, derived by Levy, and estimated using

VBA code in Haug (1998, pp. 97--100).

The main difference between the way that the simulation is conducted

here and the method used for EViews simulation of the Dickey--Fuller

critical values is that here, the random numbers are generated by open-

ing a new series called ‘RANDS’ and filling it with the random number

draws. The reason that this must be done is so that the negatives of the

elements of RANDS can later be taken to form the antithetic variates.

Finally, for each replication, the IF clause will set out of the money call

prices (where K>AV) and out of the money put prices (K<AV) to zero.

Then the call and put prices for each replication are discounted back to

the present using the risk-free rate, and outside the replications loop, the

options prices are the averages of these discounted prices across the 50,000

replications.

The workfile ‘ASIAN P’ will contain quite a few objects by the end of

the simulation, including the scalars CALLPRICE and PUTPRICE, which

will be the call and put prices. Also, the series ACVAL and APVAL will

contain the current value of the option for each of the 50,000 simulated

paths. Having the whole series across all replications can be useful for

constructing standard errors, and for checking that the program appears

to have been working correctly.
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Applying the instructions above (with K = 5500, and implied volatility

at 28%) gives simulated call and put prices as given in the following table.

Strike = 6500, IV = 26.52 Strike = 5500, IV = 34.33

CALL Price CALL Price

Analytical Approximation 203.45 Analytical Approximation 888.55

Monte Carlo Normal 204.22 Monte Carlo Normal 885.29

PUT Price PUT Price

Analytical Approximation 348.7 Analytical Approximation 64.52

Monte Carlo Normal 349.43 Monte Carlo Normal 61.52

In both cases, the simulated options prices are quite close to the ana-

lytical approximations, although the Monte Carlo seems to overvalue the

out-of-the-money call and to undervalue the out-of-the-money put. Some

of the errors in the simulated prices relative to the analytical approxima-

tion may result from the use of a discrete-time averaging process using

only 125 points.

12.9 An example of bootstrapping to calculate
capital risk requirements

12.9.1 Financial motivation

Risk management modelling has, in this author’s opinion, been one of the

most rapidly developing areas of application of econometric techniques

over the past decade or so. One of the most popular approaches to risk

measurement is by calculating what is known as an institution’s ‘value-

at-risk’, denoted VaR. Broadly speaking, value-at-risk is an estimation of

the probability of likely losses which could arise from changes in market prices.

More precisely, it is defined as the money-loss of a portfolio that is ex-

pected to occur over a pre-determined horizon and with a pre-determined

degree of confidence. The roots of VaR’s popularity stem from the sim-

plicity of its calculation, its ease of interpretation and from the fact that

VaR can be suitably aggregated across an entire firm to produce a sin-

gle number which broadly encompasses the risk of the positions of the

firm as a whole. The value-at-risk estimate is also often known as the

position risk requirement or minimum capital risk requirement (MCRR);

the three terms will be used interchangeably in the exposition below.
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There are various methods available for calculating value at risk, includ-

ing the ‘delta-normal’ method; historical simulation, involving the esti-

mation of the quantile of returns of the portfolio; and structured Monte

Carlo simulation; see Dowd (1998) or Jorion (2006) for thorough introduc-

tions to value-at-risk.

The Monte Carlo approach involves two steps. First, a data generating

process is specified for the underlying assets in the portfolio. Second, pos-

sible future paths are simulated for those assets over given horizons, and

the value of the portfolio at the end of the period is examined. Thus the

returns for each simulated path are obtained, and from this distribution

across the Monte Carlo replications, the VaR as a percentage of the initial

value of the portfolio can be measured as the first or fifth percentile.

The Monte Carlo method is clearly a very powerful and flexible method

for generating VaR estimates, since any stochastic process for the under-

lying assets can be specified. The effect of increasing variances or correla-

tions, etc. can easily be incorporated into the simulation design. However,

there are at least two drawbacks with the use of Monte Carlo simulation

for estimating VaR. First, for a large portfolio, the computational time

required to compute the VaR may be excessively great. Second, and more

fundamentally, the calculated VaR may be inaccurate if the stochastic pro-

cess that has been assumed for the underlying asset is inappropriate. In

particular, asset prices are often assumed to follow a random walk or a

random walk with drift, where the driving disturbances are random draws

from a normal distribution. Since it is well known that asset returns are

fat-tailed, the use of Gaussian draws in the simulation is likely to lead

to a systematic underestimate of the VaR, as extremely large positive or

negative returns are more likely in practice than would arise under a nor-

mal distribution. Of course, the normal random draws could be replaced

by draws from a t-distribution, or the returns could be assumed to follow

a GARCH process, both of which would generate an unconditional distri-

bution of returns with fat tails. However, there is still some concern as

to whether the distribution assumed in designing the simulations frame-

work is really appropriate.

An alternative approach, that could potentially overcome this criticism,

would be to use bootstrapping rather than Monte Carlo simulation. In this

context, the future simulated prices are generated using random draws

with replacement from the actual returns themselves, rather than arti-

ficially generating the disturbances from an assumed distribution. Such

an approach is used in calculating MCRRs by Hsieh (1993) and by Brooks,

Clare and Persand (2000). The methodology proposed by Hsieh will now

be examined.
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Hsieh (1993) employs daily log returns on foreign currency (against the

US dollar) futures series from 22 February 1985 until 9 March 1990 (1,275

observations) for the British pound (denoted BP), the German mark (GM),

the Japanese yen (JY) and the Swiss franc (SF). The first stage in setting up

the bootstrapping framework is to form a model that fits the data and

adequately describes its features. Hsieh employs the BDS test (discussed

briefly in chapter 8) to determine an appropriate class of models. An ap-

plication of the test to the raw returns data shows that the data are not

random, and that there is some structure in the data. The dependence in

the series, shown in the rejection of randomness by the test implies that

there is either:

● a linear relationship between yt and yt−1, yt−2, . . . or

● a non-linear relationship between yt and yt−1, yt−2, . . .

The Box--Pierce Q test is applied to test for both, on the returns for the

former, and on the squared or absolute values of the returns for the latter.

The results of this test are not shown but effectively rule out the possibility

of linear dependence (so that, for example, an ARMA model would not be

appropriate for the returns), but there appears to be evidence of non-linear

dependence in the series. Therefore, a second question, is whether the non-

linearity is in-mean or in-variance (see chapter 8 for elucidation). Hsieh

uses a bicorrelation test to show that there is no evidence for non-linearity

in-mean. Therefore, the most appropriate class of models for the returns

series is a model which has time-varying (conditional) variances. Hsieh

employs two types of model: EGARCH and autoregressive volatility (ARV)

models. The coefficient estimates for the EGARCH model are reported in

table 12.1.

Several features of the EGARCH estimates are worth noting. First, as

one may anticipate for a set of currency futures returns, the asymmetry

terms (i.e. the estimated values of γ ) are not significant for any of the four

series. The high estimated values of β suggest a high degree of persistence

in volatility in all cases except the Japanese yen. Brooks, Clare and Persand

(2000) suggest that such persistence may be excessive in the sense that the

volatility implied by the estimated conditional variance is too persistent

to reproduce the profile of the volatility of the actual returns series. Such

excessive volatility persistence could lead to an overestimate of the VaR.

Leaving this issue aside, Hsieh continues to evaluate the effectiveness of

the EGARCH models in capturing all of the non-linear dependence in

the data. This is achieved by reapplying the BDS test to the standardised

residuals, constructed by taking the residuals from the estimated models,

and dividing them by their respective conditional standard deviations. If
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Table 12.1 EGARCH estimates for currency futures returns

xt = μ + σtηt

ηt ∼ N(0, 1)

log σ 2
t = α + β log σ 2

t−1 + φ(|ηt−1| − (2/π )1/2) + γ ηt−1

Coefficient BP DM JY SF

μ 0.000319 0.000377 0.000232 0.000239

(0.000208) (0.000214) (0.000189) (0.000235)

α −0.688127 −1.072229 −4.438289 −0.993241

(0.030088) (0.041828) (0.756704) (0.032479)

β 0.928780 0.889511 0.550707 0.895527

(0.002995) (0.004386) (0.075851) (0.003508)

φ 0.135854 0.187005 0.282167 0.157669

(0.019961) (0.028388) (0.093357) (0.024013)

γ −0.110718 0.084173 0.313274 0.129035

(0.177458) (0.147279) (0.201531) (0.166507)

Notes: Standard errors in parentheses.

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.

the model has captured all of the important features of the data, the

standardised residual series should be completely random. It is observed

that the EGARCH model cannot capture all of the non-linear dependence

in the mark or franc series.

A second approach to modelling volatility is derived from a high/low

volatility estimator. A daily volatility series is thus constructed using a

re-scaled estimate of the range over the trading day

σP,t = (0.361 × 1440/M)1/2 log( Hight/Lowt ) (12.21)

where Hight and Lowt are the highest and lowest transacted prices on day

t and M is the number of trading minutes during the day. The volatility

series, σP,t can now be modelled as any other series. A natural model to

propose, given the dependence (or persistence) in volatility over time, is

an autoregressive model in the volatility. The formulation used for the

price series is known as an autoregressive volatility (ARV) model

xt = σP,t ut (12.22)

ln σP,t = α +
∑

i

βi ln σP,t−i + νt (12.23)

where ν t is an error term. The appropriate lag length for the ARV model

is determined using Schwarz’s information criterion, which suggests that
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Table 12.2 Autoregressive volatility estimates for currency futures returns

xt = σP,t ut

ln σP,t = α + ∑
i

βi ln σP,t−i + νt

Coefficient BP DM JY SF

α −1.037 −1.139 −1.874 −1.219

(0.171) (0.187) (0.199) (0.193)

β1 0.192 0.153 0.208 0.115

(0.028) (0.028) (0.028) (0.028)

β2 0.134 0.111 0.137 0.106

(0.029) (0.028) (0.028) (0.028)

β3 0.062 0.052 0.058 0.068

(0.029) (0.028) (0.029) (0.028)

β4 0.069 0.092 0.109 0.091

(0.029) (0.028) (0.028) (0.028)

β5 0.137 0.091 0.112 0.118

(0.028) (0.028) (0.028) (0.028)

β6 0.027 0.072 0.074

(0.029) (0.028) (0.028)

β7 0.073 0.110 0.086

(0.028) (0.028) (0.028)

β8 0.088 0.079 0.078

(0.028) (0.028) (0.028)

R̄2 0.274 0.227 0.170 0.193

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.

8, 8, 5 and 8 lags should be used for the pound, mark, yen and franc

series, respectively. The coefficient estimates for the ARV models are given

in table 12.2.

The degrees of persistence for each exchange rate series implied by

the ARV estimates is given by the sums of the β coefficients, which are

0.78, 0.76, 0.62, 0.74, respectively. These figures are high, although less

so than under the EGARCH formulation. The standardised residuals from

this model are given by xt/σ̂P,t , where σ̂P,t are the fitted values of volatil-

ity. An application of the BDS test to these standardised residuals shows

no evidence of further structure apart from in the Swiss franc case, where

the test statistics are marginally significant. Thus, since these standard-

ised residuals are iid, it is valid to sample from them using the bootstrap

technique.
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To summarise, it is concluded that both the EGARCH and ARV models

present reasonable descriptions of the futures returns series, which are

then employed in conjunction with the bootstrap to estimate the value

at risk estimates. This is achieved by simulating the future values of the

futures price series, using the parameter estimates from the two models,

and using disturbances obtained by sampling with replacement from the

standardised residuals (η̂t/ĥ1/2
t ) for the EGARCH model and from ut and

νt for ARV models. In this way, 10,000 possible future paths of the series

are simulated (i.e. 10,000 replications are used), and in each case, the

maximum drawdown (loss) can be calculated over a given holding period

by

Q = (P0 − P1) ×number of contracts (12.24)

where P0 is the initial value of the position, and P1 is the lowest simulated

price (for a long position) or highest simulated price (for a short position)

over the holding period. The maximum loss is calculated assuming hold-

ing periods of 1, 5, 10, 15, 20, 25, 30, 60, 90 and 180 days. It is assumed

that the futures position is opened on the final day of the sample used to

estimate the models, 9 March 1990.

The 90th percentile of these 10,000 maximum losses can be taken to

obtain a figure for the amount of capital required to cover losses on 90%

of days. It is important for firms to consider the maximum daily losses

arising from their futures positions, since firms will be required to post

additional funds to their margin accounts to cover such losses. If funds

are not made available to the margin account, the firm is likely to have

to liquidate its futures position, thus destroying any hedging effects that

the firm required from the futures contracts in the first place.

However, Hsieh (1993) uses a slightly different approach to the final

stage, which is as follows. Assuming (without loss of generality) that the

number of contracts held is 1, the following can be written for a long

position

Q

x0

=
(

1 − x1

x0

)
(12.25)

or

Q

x0

=
(

x1

x0

− 1

)
(12.26)

for a short position. x1 is defined as the minimum price for a long position

(or the maximum price for a short position) over the horizon that the

position is held. In either case, since x0 is a constant, the distribution of

Q will depend on the distribution of x1. Hsieh (1993) assumes that prices
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are lognormally distributed, i.e. that the logs of the ratios of the prices,

ln

(
x1

x0

)

are normally distributed. This being the case, an alternative estimate of

the fifth percentile of the distribution of returns can be obtained by taking

the relevant critical value from the normal statistical tables, multiplying

it by the standard deviation and adding it to the mean of the distribution.

The MCRRs estimated using the ARV and EGARCH models are compared

with those estimated by bootstrapping from the price changes themselves,

termed the ‘unconditional density model’. The estimated MCRRs are given

in table 12.3.

The entries in table 12.3 refer to the amount of capital required to

cover 90% of expected losses, as percentages of the initial values of the

positions. For example, according to the EGARCH model, approximately

14% of the initial value of a long position should be held in the case of

the yen to cover 90% of expected losses for a 180-day horizon. The results

contain several interesting features. First, the MCRRs derived from boot-

strapping the price changes themselves (the ‘unconditional approach’) are

in most cases higher than those generated from the other two methods,

especially at short investment horizons. This is argued to have occurred

owing to the fact that the level of volatility at the start of the MCRR

calculation period was low relative to its historical level. Therefore, the

conditional estimation methods (EGARCH and ARV) will initially forecast

volatility to be lower than the historical average. As the holding period in-

creases from 1 towards 180 days, the MCRR estimates from the ARV model

converge upon those of the unconditional densities. On the other hand,

those of the EGARCH model do not converge, even after 180 days (in fact,

in some cases, the EGARCH MCRR seems oddly to diverge from the un-

conditionally estimated MCRR as the horizon increases). It is thus argued

that the EGARCH model may be inappropriate for MCRR estimation in this

application.

It can also be observed that the MCRRs for short positions are larger

than those of comparative long positions. This could be attributed to an

upward drift in the futures returns over the sample period, suggesting

that on average an upwards move in the futures price was slightly more

likely than a fall.

A further step in the analysis, which Hsieh did not conduct, but which

is shown in Brooks, Clare and Persand (2000), is to evaluate the perfor-

mance of the MCRR estimates in an out-of-sample period. Such an exercise

would evaluate the models by assuming that the MCRR estimated from
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Table 12.3 Minimum capital risk requirements for currency futures as a percentage of
the initial value of the position

Long position Short position

Unconditional Unconditional
No. of days AR density EGARCH AR density EGARCH

BP 1 0.73 0.91 0.93 0.80 0.98 1.05

5 1.90 2.30 2.61 2.18 2.76 3.00

10 2.83 3.27 4.19 3.38 4.22 4.88

15 3.54 3.94 5.72 4.45 5.48 6.67

20 4.10 4.61 6.96 5.24 6.33 8.43

25 4.59 5.15 8.25 6.20 7.36 10.46

30 5.02 5.58 9.08 7.11 8.33 12.06

60 7.24 7.44 14.50 11.64 12.87 20.71

90 8.74 8.70 17.91 15.45 16.90 28.03

180 11.38 10.67 24.25 25.81 27.36 48.02

DM 1 0.72 0.87 0.83 0.89 1.00 0.95

5 1.89 2.18 2.34 2.23 2.70 2.91

10 2.77 3.14 3.93 3.40 4.12 5.03

15 3.52 3.86 5.37 4.36 5.30 6.92

20 4.05 4.45 6.54 5.19 6.14 8.91

25 4.55 4.90 7.86 6.14 7.21 10.69

30 4.93 5.37 8.75 7.02 7.88 12.36

60 7.16 7.24 13.14 11.36 12.38 20.86

90 8.87 8.39 16.06 14.68 16.16 27.75

180 11.38 10.35 21.69 24.25 26.25 45.68

JY 1 0.56 0.74 0.72 0.68 0.87 0.86

5 1.61 1.99 2.22 1.92 2.36 2.73

10 2.59 2.82 3.46 3.06 3.53 4.41

15 3.30 3.46 4.37 4.11 4.60 5.79

20 3.95 4.10 5.09 5.13 5.45 6.77

25 4.42 4.58 5.78 5.91 6.30 7.98

30 4.95 4.92 6.34 6.58 6.85 8.81

60 6.99 6.84 8.72 10.53 10.74 13.58

90 8.43 8.00 10.51 13.61 14.00 17.63

180 10.97 10.27 13.99 21.86 22.21 27.39

SF 1 0.82 0.97 0.89 0.93 1.12 0.98

5 1.99 2.51 2.48 2.23 2.93 2.98

10 2.87 3.60 4.12 3.37 4.53 5.09

15 3.67 4.35 5.60 4.22 5.67 7.03

20 4.24 5.10 6.82 5.09 6.69 8.86

25 4.81 5.65 8.12 5.90 7.77 10.93

30 5.23 6.20 9.12 6.70 8.47 12.50

60 7.69 8.41 13.73 10.55 13.10 21.27

90 9.23 9.93 16.89 13.60 17.06 27.80

180 12.18 12.57 22.92 21.72 27.45 45.47

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.
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the model had been employed, and by tracking the change in the value

of the position over time. If the MCRR is adequate, the 90% nominal esti-

mate should be sufficient to cover losses on 90% of out-of-sample testing

days. Any day where the MCRR is insufficient to cover losses is termed

an ‘exceedence’ or an ‘exception’. A model that leads to more than 10%

exceptions for a nominal 90% coverage is deemed unacceptable on the

grounds that on average, the MCRR was insufficient. Equally, a model that

leads to considerably less than the expected 10% exceptions would also be

deemed unacceptable on the grounds that the MCRR has been set at an

inappropriately high level, leading capital to be unnecessarily tied up in

a liquid and unprofitable form. Brooks, Clare and Persand (2000) observe,

as Hsieh’s results forewarn, that the MCRR estimates from GARCH-type

models are too high, leading to considerably fewer exceedences than the

nominal proportion.

12.9.2 VaR estimation using bootstrapping in EViews

Following the discussion above concerning the Hsieh (1993) and Brooks,

Clare and Persand (2000) approaches to calculating minimum capital risk

requirements, the following EViews code can be used to calculate the

MCRR for a 10-day holding period (the length that regulators require banks

to employ) using daily S&P500 data, which is found in the file ‘sp500.wf1’.

The code is presented, followed by an annotated copy of some of the key

lines.

′THIS PROGRAM APPLIES THE BOOTSTRAP TO THE
′CALCULATION OF
′MCRR FOR A 10-DAY HORIZON PERIOD
′LOAD WORKFILE

LOAD ‘‘D:\CHRIS\BOOK\SP500.WF1’’

RNDSEED 12345

!NREPS=10000

SERIES RT

SERIES U

SERIES H

SERIES MIN

SERIES MAX

SERIES L1

SERIES S1

SCALAR MCRRL

SCALAR MCRRS

RT=LOG(SP500/SP500(−1))
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EQUATION EQ1.ARCH(M=100,C=1E-5) RT C

EQ1.MAKEGARCH H

EXPAND 1 10000

SERIES HSQ=Hˆ0.5

SERIES RESI=RT-@COEFS(1)

SERIES SRES=RESI/HSQ

EQ1.FORECAST RTF YSE HF
′BOOTSTRAP LOOP

FOR !Z=1 TO !NREPS

SMPL 3 2610

GROUP G1 SRES

G1.RESAMPLE

SMPL 2611 2620

RT=@COEFS(1)+@SQRT(HF(-2610))∗SRES B(−10)

SP500=SP500(−1)∗EXP(RT)

MIN(!Z)=@MIN(SP500)

MAX(!Z)=@MAX(SP500)

NEXT

SMPL 1 10000
′LONG POSITION

L1=LOG(MIN/1138.73)

MCRRL=1-(EXP((−1.645∗@STDEV(L1))+@MEAN(L1)))
′SHORT POSITION

S1=LOG(MAX/1138.73)

MCRRS=(EXP((1.645∗@STDEV(S1))+@MEAN(S1)))−1

Again, annotation of the EViews code above will concentrate on com-

mands that have not been discussed previously. The ‘SERIES . . .’ and

‘SCALAR . . .’ statements set up the arrays that will hold the series and

the scalars (i.e. single numbers) respectively.

Then ‘EQUATION EQ1.ARCH(M=100,C=1E-5) RT C’ estimates an ARCH

model, denoting the equation object created by ‘EQ1’, and allowing the

process to perform up to 100 iterations with a convergence criterion

of 10−5, with the dependent variable RT (which is the returns series)

and the conditional mean equation containing a constant only. The line

‘EQ1.MAKEGARCH H’ will generate a series of fitted conditional variance

values, denoted by H. The ‘EXPAND 1 10000’ instruction will increase the

size of the arrays in the workfile to 10000 from the original length of the

S&P series (2,610 observations).

The three lines SERIES HSQ=Hˆ0.5, SERIES RESI=RT-@COEFS(1) and

SERIES SRES=RESI/HSQ will construct a set of standardised residuals.
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The next step is to forecast the conditional variances for 10 observations

2611 to 2620 using the command ‘EQ1.FORECAST RTF YSE HF’, which

will construct forecasts of the conditional mean (placed into RTF), the

conditional standard deviation (YSE) and the conditional variance (HF),

respectively.

Next follows the core of the program, which is the bootstrap loop, Z.

The number of replications ‘!NREPS’ has been defined as 10,000. The in-

structions GROUP G1 SRES and G1.RESAMPLE construct a group (in this

case, containing only one element SRES), which is then resampled. The

re-sampled series is then placed in SRES B. The future paths of the series

over the 10-day holding period are then constructed, and the maximum

and minimum price achieved over that period (observations 2611 to 2620)

are saved in the arrays MAX and MIN, respectively. Finally, NEXT finishes

the bootstrapping loop.

The following SMPL instruction is necessary to reset the sample period

used to cover all observation numbers from 1 to 10,000 (i.e. to incorporate

all of the 10,000 bootstrap replications). By default, if this statement was

not included, EViews would have continued to use the most recent sample

statement, conducting analysis using only observations 2611 to 2620:

SMPL110000

The following block of two commands generates the MCRR for the long

position. The first stage is to construct the log returns for the maximum

loss over the 10-day holding period. Notice that the command will auto-

matically do this calculation for every element of the ‘MIN’ array -- i.e.

for all 10,000 replications. In order to use information from all of the

replications, and under the assumption that the L1 statistic is normally

distributed across the replications, the MCRR can be calculated using the

command given (rather than using the fifth percentile of the empirical

distribution). This works as follows. Assuming that ln( x1

x0
) is normally dis-

tributed with some mean m and standard deviation sd, a standard normal

variable can be constructed by subtracting the mean and dividing by the

standard deviation

ln

(
x1

x0

)
− m

sd
∼ N (0, 1).

The 5% lower tail critical value for a standard normal is −1.645, so to

find the fifth percentile

ln

(
x1

x0

)
− m

sd
= −1.645 (12.27)
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Rearranging (12.27)

x1

x0

= exp [−1.645sd + m] (12.28)

From (12.25), (12.28) can also be written

Q

x̄0

= 1 − exp [−1.645sd + m] (12.29)

which will give the maximum loss or draw down on a long position over

the simulated 10 days. The maximum draw down for a short position will

be given by

Q

x̄0

= exp [−1.645sd + m] − 1 (12.30)

The following two lines then repeat the above procedure, but replacing

the ‘MIN’ array with ‘MAX’ to calculate the MCRR for a short position:

The results that would be generated by running the above program are

approximately:

MCRR = 0.04035

MCRR = 0.04814

These figures represent the minimum capital risk requirement for a long

and short position, respectively, as a percentage of the initial value of

the position for 95% coverage over a 10-day horizon. This means that, for

example, approximately 4% of the value of a long position held as liquid

capital will be sufficient to cover losses on 95% of days if the position

is held for 10 days. The required capital to cover 95% of losses over a

10-day holding period for a short position in the S&P500 index would be

around 4.8%. This is as one would expect since the index had a positive

drift over the sample period. Therefore, the index returns are not symmet-

ric about zero as positive returns are slightly more likely than negative

returns. Higher capital requirements are thus necessary for a short po-

sition since a loss is more likely than for a long position of the same

magnitude.

Key concepts
The key terms to be able to define and explain from this chapter are

● simulation ● bootstrapping

● Monte Carlo sampling variability ● pseudo-random number

● antithetic variates ● control variates
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Review questions

1. (a) Present two examples in finance and two in econometrics (ideally

other than those listed in this chapter!) of situations where a

simulation approach would be desirable. Explain in each case why

simulations are useful.

(b) Distinguish between pure simulation methods and bootstrapping.

What are the relative merits of each technique? Therefore, which

situations would benefit more from one technique than the other?

(c) What are variance reduction techniques? Describe two such

techniques and explain how they are used.

(d) Why is it desirable to conduct simulations using as many replications

of the experiment as possible?

(e) How are random numbers generated by a computer?

(f) What are the drawbacks of simulation methods relative to analytical

approaches, assuming that the latter are available?

2. A researcher tells you that she thinks the properties of the Ljung–Box

test (i.e. the size and power) will be adversely affected by ARCH in the

data. Design a simulations experiment to test this proposition.

3. (a) Consider the following AR(1) model

yt = φyt−1 + ut (12.31)

Design a simulation experiment (with code for EViews) to determine

the effect of increasing the value of φ from 0 to 1 on the distribution

of the t-ratios.

(b) Consider again the AR(1) model of (12.31). As stated in chapter 4,

the explanatory variables in a regression model are assumed to be

non-stochastic, and yet yt−1 is stochastic. The result is that the

estimator for φ will be biased in small samples. Design a simulation

experiment to investigate the effect of the value of φ and the sample

size on the extent of the bias.

4. A barrier option is a path-dependent option whose payoff depends on

whether the underlying asset price traverses a barrier. A knock-out call is

a call option that ceases to exist when the underlying price falls below a

given barrier level H . Thus the payoff is given by

max[0, ST − K ] if St > H ∀ t ≤ T
0 if St ≤ H for any t ≤ T .

where ST is the underlying price at expiry date T , and K is the exercise

price. Suppose that a knock-out call is written on the FTSE 100 Index.
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The current index value, S0 = 5000, K = 5100, time to maturity = 1

year, H = 4900, IV = 25%, risk-free rate = 5%, dividend yield = 2%.

Design a Monte Carlo simulation to determine the fair price to pay for

this option. Using the same set of random draws, what is the value of an

otherwise identical call without a barrier? Design computer code in

EViews to test your experiment.


